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Evaluation of POD Curves Based on Simulation Results

¢ Inspection reliability: one of the key issues in ensuring safety of
critical structural components

e Increasing use of probabilistic approaches based on statistical criteria
such as POD curves and PFAs

¢ Are currently obtained thru expensive and time consuming
experimental campaigns

 To propose tools to replace some of the experimental data with simulation
results such as those obtained with the software CIVA
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Outline
Cea POD curves evaluation based on a sampling approach
» Definition of the uncertainty sources
»Uncertainty propagation thru the physical model
> Extraction of the output (the variable of interest)
»Computation of the POD curve and the lower confidence bound
Validation case
»HFET of fatigue cracks in Titanium
Validity of the simulated POD curve : error sources
Future work and objectives for CIVA
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Aim of the approach: first, simulate a set of “realistic values”
for the NDI system response
e « realistic values»: values that take into account uncertainty and noise sources
and thus reflect fluctuations around the theoretical responses
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... then, perform an estimation of the POD curve using
a functional form
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POD’s in CIVA Software: a sampling approach based
on existing physical models

Random

Random input Response Probabilistic

CIVA Modelin characterization of
parameters g inspection

(UT, ET) capability: POD,
PFA, ROC, ...

+ Noise

Definition of the inspection setup

Description of uncertainties on a set of input parameters
Propagation of uncertainty thru existing models (Monte Carlo)
Extraction of the output (the variable of interest)

Evaluation of probabilistic criteria such as the POD, PFA
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Evaluation of POD Curves Based on Simulation Results

Cej Factors that can be adressed using physical models

Factors affecting the probe signal
response due to a flaw

T
-/A -

¢ NDI system: transducer, scan plan, electronic device, probe orientation

e Part: geometry, material properties, structural properties, surface roughness

* Flaw: size, shape, orientation, position, material properties

Factors that are difficult/impossible to address using physical models

Some “human factors” : psychological factors, physiological factors
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Evaluation of POD Curves Based on Simulation Results

Cej These factors are either deterministic or random during the inspection

Factors that are thought to be deterministic

A signal-determining factor is taken to be deterministic if either the
factor can be controlled in the inspection operation or if it is desired to
estimate POD as a function of the level factor (flaw size for instance).

Factors that are thought to be random or uncertain

The factor is thought to be random during the production/field
inspection if there is insufficient knowledge related to it, if it is not

well controlled or if it implies physical phenomena with inherent
randomness.
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Evaluation of POD Curves Based on Simulation Results

Cej Examples of random (uncertain) factors:

e Detail of metallurgical macro and microstructure: structural noise, beam distortions,
beam deviations

* Flaw morphology: for a fixed size, various parameters such as shape, orientation,
position, elastic properties, and conductivity can vary in a random manner

e Probe positioning: Lift-off variations and/or probe orientation during a manual
inspection using an eddy current pencil probe
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Modeling uncertainty sources using statistical distributions
Simulated

o -/ Probe Bnominal > Snominal
6, — S

| 6, — S,
Notch ——— —

Skew
T~ en — sn
]
Dt s Ut e [
i rF """" -1 ei Proposed parametric distributions:
b vty [hem .
e P Uniform
Dttt e [ =l
k] Normal
- . Log-normal
e T Rayleigh
T .
Exponential
Statismt"(i‘}:al
distribution for ) , , , ;
o | _oum the skew angle Defined using engineering judgment
I Bedicated GuI




ND=110
Performing uncertainty propagation using a sampling
approach (Monte Carlo)
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Simulations are based on existing physical models

« UT beam modeling using ray tracing (pencil method)

« UT beam-defect modeling using Kirchhoff approximation, Geometrical
Diffraction Theory, Born approximation

« ECT field modeling using Finite Integration Technique, Analytical
expressions

« ECT defect response modeling using Volume Integral Method
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Estimation of the POD curve using a functional form

Ce:} * POD curves relate the detectability of a flaw to its size (or to another geometrical
characteristic)

e Usual approach (MIL HDBK 1823) consist in:
> assuming a functional form for the POD curve
EADS > estimating the parameters of the function from the inspection results
> estimating the associated confidence bound

- -1
e Hit/miss data format: POD(a) = {1+ exp[— \%(w\j}}
Y

Log-odds function
Berens

« Signal response data format: POD(a) = (D[(|n a —‘\:l_l‘)ﬁ::]

Cumulative log-normal distribution function

Cheng e Estimated from a finite size data sample sampling uncertainty
confidence bound
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Validation case: HFET of fatigue cracks in Titanium

Cej Part NDT

Material: Titanium (TA6V) Configuration: High Frequency Eddy

EADS“ Currents Testing (HFET)

Geometry: Flat areas

Probe: Pencil probe (2MHz)

Conditions: In-service (manual)

Defects: Fatigue cracks




Design of Numerical Experiments HFET on Titanium

Cea » Characteristic variable: crack length (mm)
* Uncertain parameters:

EADS Start scan position Crack height (mm) Angle of the probe (°)

*Corresponds to the position of the probe Fatigue cracking is subject to many Translated into an additional lift-off using
for picking the maximum amplitude signal uncertainties geometrical rule
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Uniform in [-0.5;05] Gaussian with depe.ndency to the crack ) e
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Sampling strategy: Monte Carlo

Simulated vs. Experimental data

— Experimental database
Cej e 69 cracks from 0.33 mm to 6.66 mm
e 5 operators
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— Simulations

® 100 crack lengths from 0.25 mm to 5.0 mm
* 6 samples per crack length




Signal response data analysis

Ce-J First saturated data
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Signal response data analysis

Cej High variability for larger cracks may be due to the complex crack shapes with

EADS

possible electrical contacts between the two faces of the crack aperture. These
contacts are responsible for signal amplitude drops.

= Dataset is augmented with an additional uncertain input parameter: the rate
of electrical contacts along the crack length.

Ratio of electrical contacts (%)

Crack length (mm)




Signal response data analysis

First saturated data
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Adding electrical contacts as an uncertain input
parameter allows for reproducing the high
variability in the whole crack length range.
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Hit/Miss POD analysis: 4 input uncertain parameters

o 6|00 simulated data

* 4 uncertain parameters (start position, crack height, probe angle, elec. contacts)
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POD curves very similar
*Slope corrected but still the
effect of the number of data

*Confidence band smaller

for simulation dataset because
more data than in the
experimental dataset

Values of interest very
similar
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Validity of the simulated POD curve : error sources

When determining a POD curve from simulation results, various error sources may
C@:J impact the results:

Sampling uncertainty -> lower confidence bound

Errors on the estimation of the lower confidence bound -> if sample size is to small.
Need more simulations.

Hypothesis of the POD model: linear relationship, constant standard deviation...

Modeling errors -> systematic error (bias on the estimates of the parameters of the
curve). Need validation of the models/ definition of the validity domain.

Errors on the definition of the inputs ->choice of the uncertain parameters of the
inspection, of the statistical distributions describing them and of the parameters of
the distributions. Need more engineering judgment.
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Perspectives

eAdditional tools are needed for the modeling of uncertainty sources: take
into account correlations between input parameters
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f Parameter 1 Parameter 1
Example: Correlations between the length and the height of a crack

o Perform experimental validation for EC and UT application cases

¢ New approaches for the modeling of the POD curve

‘ ‘ PICASSO Project : European project (FP7), started in 2009
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Thank you for your attention

Questions?
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