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Abstract. On the one hand, in recent years, artificial intelligence is a new trend that 
showed itself as a very powerful tool to overcome both the complexity and/or the 
large amount of data to be treated. On the other hand, acoustic emission has been 
proven to be an effective tool for monitoring and control in multiple processes. In 
this contribution, we presents three examples from completely different fields where 
acoustic emission technique is combined with artificial intelligence to make a 
significant step forward for process monitoring and quality control. 

The first example shows the possibility to predict failure in lubricated surfaces 
using acoustic time-frequency features and random forest algorithm. Although 
scuffing is a stochastic failure mechanism, we can predict it 5 mins before it takes 
place. We proved this for a grey cast iron - hardened 42CrMo6 steel tribo-pair. 

The second example depicts an in situ and real-time monitoring electrical 
discharge in solids, where the induced mechanical damage is estimated by acoustics. 

The last example addresses the quality control in additive manufacturing and 
laser welding, which are at the centre of attention for years. We will show how 
acoustic emission combined with artificial intelligence can be used for 
differentiating the type of weld and detecting some type of defects. 

Introduction  

Acoustic Emission (AE) analysis is one of the most effective monitoring methods with high 
sensitivity and reliability in detection of changes in materials. Consequently, AE has been 
used successfully in many engineering applications and for a broad variety of materials, 
material compositions and structures [1]. The engineering applications include tribology 
[2], failure of components [3] and, more recently, laser welding and/or additive 
manufacturing [4, 5]. However, despite the technical simplicity in collecting of AE data, its 
processing is not a trivial task. The reason is that each specific application requires a 
specific interpretation of the acoustic signals in terms of the underlying physical 
phenomena. Artificial intelligence (AI) makes such interpretation by correlating the 
acquired AE with the real events. In real life conditions and industrial environment, the 
collected data is distinguished for intricate dependencies between inputs/outputs and the 
presence of intensive background noises. This is an inherent problem, especially in 
tribology, facture mechanics, laser welding and additive manufacturing. 
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In tribology and fracture mechanics, the AE signals during friction of solids can be 
generated by at least nine factors: (1) elastic interaction & impacts; (2) changes in stress-
strain state of a local volume of slid surface layer; (3) plastic deformation and damage;    
(4) generation, motion and interaction of dislocation; (5) energy liberation at repeated 
deformation or phase hardening-weakening and damage of surface layer; (6) changes in 
friction surface structure; (7) formation of micro-cracks, micro-pores and new surfaces 
because of wear; (8) appearance of wear debris and (9) surface spalling and formation of 
fatigue pit [2]. 

Laser welding and additive manufacturing are similar in many aspects. In both 
processes, the content of AE includes the echoes from material changes, melt dynamics and 
solidification processes. The latter is distinguished by the formation of crack that also have 
unique acoustic signatures. This means that AE content is affected by the substrate 
characteristics (e.g. chemical constituents, surface quality, environments) and process 
parameters (e.g. laser type, spot size, laser power, scan speed, and scan line spacing). In 
addition, the AE is enriched by components, generated from the pores, balling, unfused 
materials, and cracking. All aforementioned factors are impossible to predict and the 
process dynamics is dependant from a large amount of parameters. 

With all mentioned above, the relation between the AE content in relation and the 
real underlying physical event is of extreme complexity and is not always possible to do. In 
many cases, the solution requires very expensive equipment like synchrotron, where the 
necessary information is accessible in situ and in real-time. Unfortunately, such 
experiments are time-consuming, costly and with some limitations such as the sample size. 
The latter, despite getting a fundamental understanding of the AE event, the experimental 
results may not be transferable to real life conditions. The other investigation methods are 
based on a post-mortem analysis which always includes a certain level of uncertainties. AI 
methods allow bypassing these constraints by using high non-linear data transforms that 
allows reducing the effect of noises, complex data structure and even the non-accuracies in 
preparations of training sets. 

Wavelet decomposition 

The monitoring of the evolution of AE signals in time allows understanding the dynamics 
of the underlying process. Fast Fourier transform (FFT) spectrum [6] and Short-Time 
Fourier Transform (STFT) [7]-[8] are often used for such an analysis. Unfortunately, FFT 
is principally limited to stationary and time invariant signals and it does not retain the time 
domain information [6]. STFT [7]-[8] is intrinsically limited due to a resolution 
problem [6]. As an alternative approach and unlike the Fourier transform, the wavelet 
transform (WT) provides simultaneous description of a signal on both time and frequency 
domains [9]. WT can specify the frequency of the signals and the time associated to those 
frequencies. 

According to the discrete wavelet transform (DWT) principle [6]-[10], at each 
decomposition level, part of the frequency components (starting from the maximum 
acquired frequency) is extracted from the original signal in a sequential order. The 
extracted parts are the so-called details whereas the remained signal is named 
approximation. The approximation signal can be further decomposed into a next level, so 
that the signal is broken down into lower frequency components [6]-[11]. Based on the 
theory of wavelet decomposition, the signal after n-th decomposition level is expressed as: 
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 where S is the signal, A and D are the reconstructed 
approximation and details, respectively, while ε 
represents the approximation error which depends on 
the type of the mother wavelet (modulation function) 
used to decompose the signal. The decomposition 
tree at multiple levels for the given signal S is shown 
in Fig. 1 .  

Many families of wavelet exist (e.g. 
Daubechies, Symlet, Coiflets, BiorSplines, Meyer, Gaussian, Mexican hat, Morlet). In 
these works, the mother wavelet having the minimum error of the reconstructed signal in 
Eq. 1 was used. Apart from that, we use the data adaptive wavelets to minimize the 
approximation error if none from the standard wavelets provide with acceptable 
approximation accuracy. The same specialised wavelets are used here for detection of 
separate patterns within the signals. 

1. Example: AE meets AI in the field of tribology 

The example explained below was reported with details in [12]. In this work, an SRV 
reciprocating tribometer schematically illustrated in Fig. 2 was used. An environmental 
control unit helps to keep the test conditions in the chamber constant with a temperature of 
35 °C and a relative humidity of 30%. The test configuration is flat-on-flat as it is known to 
be problematic and, therefore, a special holder was used to prevent the inclination of the 
counter-body and to ensure flat-on-flat conditions.  

The counter-body (42CrMo4 steel) was oscillating with a stroke of 4 mm at a 
frequency of 6 Hz with an estimated sliding time of 54 ms for each stroke as seen from Fig. 
3. A constant load of 600 N, giving a nominal pressure of 24 MPa, was applied on the 
contact surface. The coefficient of friction (COF), the sample temperature, the applied load 
and the stroke were continuously monitored and recorded by the tribometer software. The 
sampling rate was 16 ms for the COF and 2 s for the other parameters. A representative 
curve for one forward and back stroke taken from SRV tribometer software is illustrated in 
Fig. 3. Fig. 4 demonstrates how well the COF correlates with the AE RMS data. 

 

 

In order to achieve the starved lubrication conditions and consequently scuffing, the 
lubrication of the cast iron surface was performed by spraying a small quantity (0.4 μl/cm2) 
of pure poly-alpha-olefin oil (PAO) with a viscosity of 8 cSt using a high precision 
spraying machine. The weight of the sprayed oil was controlled by an accurate weighing 
(±0.1 mg). 

 
Fig. 1 Wavelet decomposition tree 

  
 

Fig. 2. Tribo-test set-up (a) 
Reciprocating tribometer 

(SRV® III), and (b) schematic 
diagram of the counter-body 

and the bottom sample  

Fig. 3. Values of friction 
coefficients for one forward 

and back strokes 

Fig. 4. Variation of the AE RMS and COF 
with time and the friction regimes: 

running-in, steady-state, pre-scuffing and 
scuffing 



4 

On specific tribo-tests, an acoustic emission (AE) sensor was mounted close to the 
cast iron sample with a thin layer of grease and fixed with a paper tape. The signals were 
recorded using a Vallen acquisition system and a PAC WD sensor. The selected sensor has 
a broadband response range from 100 kHz to 1 MHz. The pre-amplifier had a fixed gain 
setting of 34 dB. The sampling rate was 1 MHz with a record duration of 65 ms to cover a 
complete stroke. To eliminate the noise from the tribometer, the best threshold was found at 
29 dB. Fig. 5 shows a typical AE signal (waveform) collected by the AE system. 

In the present work, all AE signals were decomposed with the wavelet packet 
transform using the Daubeshies wavelet with ten vanishing moments (known as db10 in 
Matlab 2012). Db10 showed to be the most suitable wavelet for the collected AE signals as 
it provides the minimum approximation errors for the collected signals. 

The changes in the AE content were employed to describe the momentary surface 
modifications. The changes were extracted from two consecutive AE signals obtained from 
the current and the previous strokes. The entire dataset was processed using the following 
procedure: Each signal is decomposed and a set of WP is extracted using Daubeshies 
wavelet. The corresponding time-frequency content was then divided into separate non-
overlapping frames (F). Each F is a two-dimensional structure that bounds a limited set of 
WP. This set is defined by the height (N) that corresponds to the number of scales j (see 
Eq. (1)) and a width (M) that corresponds to a fixed time span. The time span for different 
frames within the signal is adjusted to compensate the acceleration and deceleration of the 
counter-body relative to the sample surface. The analysis of the separate frames allows 
localizing spatially the surface asperity modifications due to friction, and the number of 
frames defines the spatial resolution of the present method. 

Random forest (RF) is a recent classification/regression technique introduced by L. 
Breiman [13]. It has some advantages regarding the friction problem. In particular, RF does 
not require any preliminary knowledge about the data distribution in the training datasets. 
In the present work, the input data is a statistical sequence with highly complex 
distributions. Involvement of the ensemble of classifiers/regressors makes the RF robust to 
the presence of outliers and noises, as well as makes it stable to overfitting. Considering 
that friction is a response of the contact between surfaces with a random configuration of 
asperities, it is evident that the input data are subjected to high variations, containing a lot 
of outliers and noise. RF is a non-parametric framework, which is adaptable to a variety of 
different conditions with a minimum effort. This implies its adaption to real life 
applications with a minimum effort. 

The variation of the COF during sliding is taken as the ground truth for the 
estimation of the failure time. The dynamics of the COF, as shown in Fig. 4, includes three 
major regimes: the running-in, steady-state and scuffing. The running-in is defined as the 
first 50 minutes of the operating time during which the COF fluctuates extensively as the 
contact surfaces adjusted themselves. After the running-in, the steady-state is characterized 
by the fact that the mean COF is almost stable until a sharp upsurge and failure. The sharp 
increase in the COF of this lubricated tribo-system is called scuffing. 

The prediction time interval τ was varied in multiple test-runs starting at 10 s, 
incrementally increased by step of 10 s, up to 310 s, when the predicted scuffing time was 
found to be later than the real one. Fig. 6 shows a smoothed curve of the real data (red 
curve) versus the predicted smoothed curves for different prediction time intervals (blues 
curves) of two samples. The figure includes only the prediction results of the last part of the 
trajectory including pre-scuffing and scuffing. This part is actually the most critical for the 
RF regression due to the rapid changes in the features behaviour, especially in the transition 
between pre-scuffing and scuffing. By scrutinizing Fig. 6, we see that the predicted and real 
curves are close to each other during the pre-scuffing regime. This brings confidence this 
regime can be forecasted up to 5 minutes before its occurrence. 
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2. Example: AE meets AI in the field of fracture mechanics 

The example explained below was reported with details in [14]. Pre-weakening of solid 
materials using electric discharge is a new technique aiming at reducing the costs and 
energy consumption of raw materials processing in mining and recycling industries. 
However, the absence of an effective pre-weakening quality control prohibits its 
introduction into a wide practice. This work aims to present a promising solution to fulfil 
this gap by demonstrating the applicability of discharge pre-weakening by means of 
acoustic emission. 

To simplify the pre-weakening quality monitoring, this study was carried out using 
transparent artificial samples (TAS) that allowed visual monitoring of the cracks formation 
induced by the electric discharge. 

The TAS samples were made of poly-methyl-methacrylate (PMMA). The dielectric 
constant of PMMA is around 3 which fits within the range of dielectric constants of most 
natural solid materials  that are between 3 and 20 [15]. 

 The discharge events inside the TAS were initiated using a big scale voltage 
generator. The operating voltage and storage capacitance were in the range of 90 – 200 kV 
and 2.5 – 38 nF, respectively. The voltage exposure of the TAS was carried out in a 
chamber filled with water. The setup is a standard industrial environment to provoke 
discharge preferentially inside the solid materials in a given voltage range and it is 
schematically represented in Fig. 7. Such machines and process are very noisy. 

 All TAS were exposed to electrical pulses and the corresponding AE signals were 
recorded. The detection of the acoustic signals was made directly inside the water filled 
chamber using an acoustic hydrophone sensor R30UC. It was placed at a distance of 20 cm 
from the electrode gap (See Fig. 7). The AE signals were recorded with a 10 MHz sampling 
rate and an electrical signal amplification of 20 dB. The recording time was 16 ms and the 
record was synchronized with the discharge start.  

In this work, we defined 3 categories and 
they are presented in Fig. 8. The category 
Discharge in TAS includes the AE that describes 
the pre-weakening due to the electric discharge 
propagation inside the TAS medium. The category 
Discharge fail includes partial or no discharge. The 
category Surface discharge contains the AE 
signals when the discharge occurred in the 
surrounding water environment or along the sample 
surface. 

  
Fig. 5. (a) Typical acoustic emission (AE) signal for one 
stroke of the reciprocal movement and (b) zooming in of 

signal showing the non-stationary behavior caused by local 
modification of asperities. 

Fig. 6. The real smoothed versions of 
predicted data for different time intervals 

(blue) vs. the original data (red) for Sample 3. 

 
Fig. 7. Schematic view of the 

sample location in the discharge chamber, 
filled with water. 



6 

 We used the method proposed by Gupta et al. [16] for wavelet construction for 
three main reasons. First, this method adapts the M-band wavelets to the signal in a 
statistical manner taking into account the diversity of the signals content. Second, it also 
exploits the self-similarity as a global likelihood criterion between wavelet approximation 
and the original signal. Finally, it supports the construction of both orthogonal and bio-
orthogonal bases. 

Before classification, only the most 
informative features are selected using the 
principal component analysis (PCA) [17]. The 
disposal of non-informative features decreases the 
noise in the classification and additionally 
reduces the computational complexity [17]. 
The classification was performed using support 
vector machine (SVM), a statistical machine 
learning technique proposed by Cortes and 
Vapnik [18]. 

 The classification results are presented in 
Table 1 and, despite the noisy experiment, the 
event are classify with a confidence higher than 
80% which is excellent. In the case of discharge 
in TAS, no additional discharge is required. For 
discharge fail and surface discharge, an 
additional discharge is required and the error with 
discharge in TAS is very limited having a low 
impact on the industrial process. 

 

   
Fig. 8. Example of solid materials processed using electric discharge. A metal pin electrode is placed at the 

centre of the TAS. Top is an optical microscope view of TAS subjected to an electric discharge and below is 
its respective AE signal recorded. The figure on the left is a side view of the pin electrode area of a TAS made 
of PMMA for the category Discharge fail. The figure in the middle is a side view of a TAS made of PMMA 
from the category Surface discharge. The sample on the right is a top view of TAS made of epoxy from the 

category Discharge in TAS. 

Table 1. Classification test accuracy results* 
 

 Test results accuracy in 
% for: 

Ground truth 
reference 
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Discharge in TAS 87 3 10 

Discharge fail 7 93 - 

Surface discharge 15 1 84 
 

*Dark and light grey highlight the 
classification match with the ground truth and 

classification mistakes.  
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3. Example: AE meets AI in the field of laser welding or additive manufacturing 

This last example presents the use of acoustic emission as a powerful tool for monitoring in 
situ and in real-time the quality of molten materials by a laser. The typical applications are 
laser welding or additive manufacturing. 

At present, the quality control in laser welding and additive manufacturing has been 
diligently based on temperature or high resolution imaging of the process zone. For this, 
various sensors such as pyrometers, photo diodes and matrix CCD detectors are used. 
Unfortunately, these methods have large limitations either in temperature measurement 
precision or spatial resolution. 

A single-mode fibre laser source StarFiber 150 P with a 1070 nm wavelength was 
used in this work. The laser beam went through a single-mode optical fibre with a 12 μm 
core diameter and focused at the surface of the sample by a focusing lens with a 170 mm 
focal length. This setup provides a spot size of about 30 µm diameter at the focal point 
(2w0). 

The welding trials were performed on 2 
mm-thick plates of Ti6Al4V alloy (Grade 5) due 
to the ease of the microstructural 
characterization of the different zones such as 
the fusion zone, heat affected zone (HAZ) and 
base material. 

Fig. 9 presents optical pictures (top view 
and cross-section) of the weld with its 
corresponding laser power. As seen in Fig. 9 (c), 
the laser illumination starts at a time of about 4 
ms and lasts until 54 ms (i.e. the pulse width is 
50 ms). During the process, the sample is moved 
with a velocity of 100 mm/s. Thus, it produces a 
SHADOW weld of a 5 mm length. In addition, 
the experiments were carried out in a controlled 
environment (e.g. a welding chamber filled with 
inert gas) to prevent any potential weld 
contamination such as oxidation. 

AE signals were recorded with a PICO 
sensor with frequencies between 200-750 kHz 
and being in contact with the work piece. The 
recording sampling rate was 10 MHz. 

In this study, we defined four categories. 
No illumination is when no laser is activated. 
Conduction welding is for shallow welding; 
Keyhole with defects and Keyhole are deep 
penetration welds with and without defects. 

In this contribution, we used a similar 
approach to the pre-weakening of solid materials 
via electrical discharge. M-band wavelet 
decomposition of recorded signals is carried out 
and relative energies of narrow frequency bands 
are taken as descriptive features. The correlation 
of extracted features and the real welding quality 
is carried out using Laplacian graph support 
vector machine (lapSVM) classifier [19]. 

 
Fig. 9. Typical results of a modulated  

SHADOW welding on a Ti6Al4V alloy 
sample; (a) top surface, (b) longitudinal cross-

section, (c) the laser pulse shape. 
 

Table 2. Classification test accuracy results* 
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No illumination 100 - - - 

Conduction 
welding - 86 14 - 

Keyhole - 14 80 6 

Keyhole with 
defects - - 16 84 

*Dark and light grey highlight the 
classification match with the ground truth and 

classification mistakes. 
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Table 2 shows the accuracy results in the classification which is higher or equal than 
90%. The less reliable results are for the category keyhole. The reason is due to a transition 
between keyhole and conduction welding which is hard to quantify experimentally. 

Conclusions  

In this contribution, we presented three examples where acoustic emission meets artificial 
intelligence. We showed that by combining AE signals with a state-of-the-art signal 
processing, it is possible to address highly complex industrial processes. We demonstrated 
that, even in very noisy and dirty environments, we are able to achieve reliable 
classification of investigated events. This makes this methodology very effective for 
industrial applications even though it does not explains the nature of the AE signals, but 
this is planned as the future work.  
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