

Überwachung der Fertigungsqualität von Faserverbund – Druckbehältern mittels Schallemissionsprüfung

Eric DUFFNER, Christian GREGOR, Jürgen BOHSE Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin

Kurzfassung. Ziel der Untersuchung ist die Validierung einer Prüfmethodik zur Sicherung der Fertigungsqualität von Faserverbund – Druckbehältern unter realen Fertigungsbedingungen.

Das Verfahren basiert auf Merkmalen und zulässigen Grenzwerten, die aus Schallemissionsverläufen bei der Erstdruckprüfung abgeleitet werden [1].

Die Methodik konnte zuvor bereits erfolgreich an Faserverbund – Druckbehältern mit metallischem Liner getestet und patentiert werden [2].

Mit den aktuellen Untersuchungen wurde die Möglichkeit des Erkennens von Fertigungsfehlern in Kohlenstofffaser/Glasfaser – Hybriddruckbehältern mit polymerem Liner evaluiert.

Dazu wurden Faserverbund – Druckbehälter mittels Schallemissionsmessung bei einer hydraulischen Erstdruckprüfung überwacht, wie sie (ohne Schallemissionsprüfung) generell zur Qualitätssicherung nach der Fertigung von Faserverbund – Druckbehältern gefordert wird.

An Druckbehältern aus einer Serienproduktion wurden die Schallemissionsverläufe registriert und die mittleren Merkmalswerte sowie deren Streuung als Referenz ermittelt. Diese werden mit den Schallemissionsverläufen von Druckbehältern mit gezielt eingebrachten Fertigungsfehlern verglichen.

Bei den Fertigungsfehlern handelt es sich um Fehler, die in der Serienproduktion auftreten können und mit den Methoden der herkömmlichen Qualitätssicherung schwer oder gar nicht nachzuweisen sind.

Alle untersuchten Druckbehälter wurden im Anschluss an die Erstdruckprüfung auf verschiedene Weise bis zum Versagen (Leckage, Bersten) beansprucht. Damit war es möglich, den tatsächlichen Einfluss der Fertigungsfehler auf den Berstdruck bzw. das Ermüdungsverhalten der Behälter zu verifizieren und die Aussagefähigkeit des Schallemissionsverfahrens zu beurteilen.

1 Einführung

Die Herstellung von Druckbehältern aus Faserverbundwerkstoff, wie sie z.B. für die Speicherung von Erdgas in Fahrzeugen Anwendung findet, erfordert zuverlässige und effiziente Methoden der Qualitätssicherung während der Fertigung und des Betriebes, um ein möglichst hohes Sicherheitsniveau zu gewährleisten.

Die Weiterentwicklung einer zerstörungsfreien Prüfmethode, wie der Schallemissionsprüfung (SEP), zur Sicherung der Fertigungsqualität ist hierbei ein wichtiger Schritt. Die SEP und die bestehenden Baumuster- und Serienprüfungen müssen soweit verbessert werden, dass das Verfahren für verschiedene Baumustertypen in einer einfachen und zweckmäßigen Weise unter normalen Fertigungsbedingungen angewandt werden kann.

Die angewendete Prüfmethodik basiert auf dem Vergleich der SE-Ergebnisse von Druckbehältern ohne und mit künstlich eingebrachten Fertigungsfehlern. An einer Anzahl von Kohlenstofffaser/Glasfaser – Hybriddruckbehältern ohne künstlich erzeugte Fertigungsfehler wurden SE-Verläufe bei der Erstdruckprüfung als Referenzkurven aufgenommen.

Druckbehälter mit künstlichen Fehlern in der Faserverbundstruktur wurden anschließend auf eine identische Weise getestet und die gewonnenen Ergebnisse miteinander verglichen.

2 Untersuchte Fertigungsfehler der Druckbehälter

Im Rahmen der durchgeführten Untersuchungen wurden insgesamt 19 Behälter der gleichen Generation geprüft. An neun Behältern ohne künstliche Fertigungsfehler wurden SE-Referenzkurven aufgenommen, statistisch analysiert und mit den individuellen Kurvenverläufen von neun Behältern mit künstlichen Fertigungsfehlern verglichen. Es wurden drei Arten von künstlichen Fertigungsfehlern untersucht, die mit den herkömmlichen Methoden der Qualitätssicherung schwer oder gar nicht nachzuweisen sind. Bei diesen Fehlern handelt es sich um Knoten in der Faserverbundstruktur, um eine ungleichmäßige Harzverteilung zwischen den beiden Faserarten und um beschädigte Fasern.

Die Knoten (Bild 1) in der Faserverbundstruktur können auftreten, wenn gerissene Faserstränge wieder miteinander verbunden werden, wenn Faserrollen während der Produktion aufgebraucht sind und gewechselt werden müssen oder beim Wechsel auf andere Faserarten. Die Knoten werden normalerweise nach einigen weiteren Umwicklungen aus der Verbundstruktur geschnitten. Bei den untersuchten Behälter wurden die Faserstränge fünfmal während des Wickelprozesses abgeschnitten, die Kohlenstofffasern je zweimal und die Glasfasern dreimal, was bei 6 parallel applizierten Fasersträngen zu insgesamt 30 Knoten in der Faserstruktur führt.

Bild 1: Knoten in der Glasfaserschicht

Eine ungleichmäßige Harzverteilung kann z.B. durch einen schlecht justierten Harzabstreifer oder durch einen zu geringen Harzstand im Tränkungsbad verursacht werden. Bei den untersuchten Behältern weisen die Kohlefasern einen sehr geringen Harzanteil auf. Die Glasfaserschicht wurde mit einem entsprechend höheren Harzanteil gewickelt. Aus diesem Grund unterschied sich das Gesamtgewicht des Behälters nicht von einem ungeschädigten Behälter aus der Serienproduktion. Der dritte künstliche Fertigungsfehler sind beschädigte Fasern. Hierbei wurden alle Fasern beim Wickeln über drei scharfe Kanten gezogen, bevor Sie mit dem Harz getränkt wurden (Bild 2).

Bild 2: Glasfasern werden über drei scharfe Kanten gezogen

3 Zerstörende Druckbehälterprüfung

In der Tabelle 1 sind die Ergebnisse der zerstörenden Versuche an allen 10 getesteten Behältern ohne Fertigungsfehler zusammengefasst. Besonders hervorzuheben ist das Ergebnis des Zyklierversuchs des Behälters 39/10, der ein deutlich früheres Versagen als die anderen Behälter bereits während der Zyklierungsphase zeigte. Dies weist auf einen nicht detektierten Fehler während der Fertigung oder des Transportes hin. Der Behälter wurde bei den folgenden Untersuchungen als ein fehlerhafter Behälter betrachtet.

Durchgeführte Prüfung	Behälternr.	Berstdruck	Mittelwert	
	88/10	572 bar		
Berstversuch 100 bar /min	89/10	582 bar	581 bar	
	95/10	590 bar		
Berstversuch 1 bar /min	60/10	512 bar		
	86/10	526 bar	513 bar	
	42/10	502 bar		
Zyklierversuch (1 bar/min Berstversuch)	78/10	100.000 Zyklen	-	
		(374 bar)		
	29/10	100.000 Zyklen		
		(454 bar)	-	
	39/10	10.436 Zyklen		
		(vorzeitiges		
		Versagen bei	-	
		Zyklierung)		
	41/10	41/10 100.000 Zyklen		
	41/10	(388 bar)	-	

Tabelle 1: Übersicht der Ergebnisse der zerstörenden Versuche – Behälter ohne Fertigungsfehler

Die Tabelle 2 zeigt die Ergebnisse aller zerstörenden Versuche an den Behältern mit Fertigungsfehler. Die Unterschiede zu den Versuchen an den ungeschädigten Behältern sind in der letzten Spalte dargestellt.

Durchgeführte Prüfung	Behälternr	Berstdruck bzw. Versagen bei	Mittelwert	Unterschied zu ungeschädigten				
Durengerunite Frurung	Denuiterin.	Zyklierung	Witterweit	Behältern				
Knoten in der Faserverbundstruktur								
Berstversuch 100 bar /min	199/10	532 bar	-	-8%				
Berstversuch 1 bar / min	198/10	459 bar	-	-11%				
Zyklierversuch	200/10	0/10 32.692 Zyklen - (bez		-68% (bezogen auf 100.000 Zyklen)				
Beschädigte Fasern								
Berstversuch 100 bar /min	192/10	553 bar	-	-5%				
Berstversuch 1 bar / min	193/10	475 bar	-	-7%				
Zyklierversuch (1 bar/min Berstversuch)	194/10	100.000 Zyklen (483 bar)		-				
Trockene Kohlenstofffasern								
Berstversuch 100 bar /min	197/10	440 bar	-	-24%				
Berstversuch 1 bar / min	195/10	395 bar	-	-23%				
Zyklierversuch	196/10	3.558 Zyklen	-	-96%				

Tabelle 2: Übersicht der Ergebnisse der zerstörenden Versuche – Behälter mit Fertigungsfehler

4 SE-Messung

4.1 Messaufbau und Druckbelastung

Die Sensoranordnung ist in Bild 3 dargestellt; die Sensoren wurden entlang der Längsachse der Behälter appliziert. Es wurden vier WD-Sensoren von Physical Acoustic Corporation (PAC) mit einem Frequenzband von 0,1 bis 1 MHz und 0/20/40dB Vorverstärker von PAC mit einer Vorverstärkung von 0dB verwendet. Die Sensoren wurden mit wiederverwertbarer Klebemasse auf der Behälteroberfläche ohne weitere mechanische Befestigung angekoppelt. Die Aufzeichnung erfolgte mit einem PCI-2 System ebenfalls von PAC.

Bild 3: Sensoranordnung

Der Druckverlauf richtet sich nach den realen Befüllzeiten bei der hydraulischen Erstdruckprüfung, wie sie beim Hersteller nach geltenden Normen durchgeführt wird; lediglich die Haltezeit wurde verlängert.

4.2 Auswertung der SE-Messergebnisse

Das vorgestellte Konzept der Qualitätskontrolle mittels SE basiert auf der hydraulischen Erstdruckprüfung von Druckbehältern. Während des Fertigungsprozesses wird jeder Druckbehälter bis zum 1,5-fachen des Betriebsdrucks (siehe z.B. ISO 11439) im Rahmen der Abnahmeprüfung belastet.

Das Konzept umfasst die nachfolgend aufgelisteten Schritte:

- 1) Aufzeichnen der SE-Intensität (Absolute Energiesummenkurve) während der Erstdruckprüfung an Druckbehältern ohne bewusste bzw. künstliche Fertigungsfehler
- 2) Entwickeln der Beurteilungskriterien der Energiesummenkurven für dieses Behälterdesign
- 3) Ermittlung der für dieses Behälterdesign erforderlichen Anzahl an Versuchen für eine statistisch zuverlässige "SE-Referenzkurve"
- 4) Ermitteln des Vertrauensbereiches und der oberen/unteren Grenzwerte für jedes Kriterium und jeden SE-Kanal (jede Sensorposition)
- 5) Aufzeichnen der Energiesummenkurven für Behälter mit künstlichen Fertigungsfehlern
- 6) Vergleich der Ergebnisse der Behälter mit künstlichen Fertigungsfehlern mit den ermittelten Grenzwerten für die jeweiligen Kriterien

Es wurden neun Behälter ohne Fertigungsfehler untersucht. Die Auswertung zeigte, dass mindestens sechs Behälter für die Ermittlung der Referenzkurve erforderlich sind, ab dem siebten Behälter verändern sich der Mittelwert und die Standardabweichung des Kurvenverlaufs nur noch geringfügig.

Die ermittelten und angewandten Beurteilungskriterien der Energiesummenkurven sind in Bild 5 dargestellt.

Ein wichtiges Beurteilungskriterium für die Energiesummenkurve ist das Auftreten erster Schallemissionen, das den Beginn der Schädigung durch Zwischenfaserbruch in der Verbundschicht kennzeichnet. Durch das angewandte P₀-Kriterium für das Auftreten erster, signifikanter SE-Ereignisse (Extrapolation unter Verwendung des Kurvenanstieges) wird eine größere Vergleichbarkeit unter den Kurven verschiedener Druckbehälter erreicht und eine automatische Bestimmung möglich.

Der Anstieg der Energiesummenkurve ($\Delta(\Sigma Abs.E_{AE})/\Delta p$) ist ein Kriterium, welches die Schädigungsrate des Behälters bei zunehmendem Druck beschreibt.

Während der Druckhaltephase kommt es zu weiteren SE-Signalen durch eine fortschreitende Schädigung, charakterisiert durch den Zuwachs der Absoluten Energie $(\Delta(\Sigma Abs.E_{AE}(p_{hold}))).$

Die Kriterien (2) und (4) beschreiben die Summe der Absoluten Energie bei Erreichen des Arbeitsdrucks ($\Sigma Abs.E_{AE}(p_B)$) bzw. beim Erreichen des Prüfdrucks, d.h. am Beginn der Druckhaltephase ($\Sigma Abs.E_{AE}(p_h)$).

Bild 6: Energiesummenkurven für Kanal 2 - alle Behälter ohne künstliche Fertigungsfehler

Bild 6 zeigt alle zehn getesteten Behälter, inklusive des Behälters 39/10, der sich als Behälter mit unbekanntem Fertigungsfehler herausstellte. Trotz der großen Streuung der Energiesummenkurven für diesen Behältertyp werden die Unterschiede von Behälter 39/10 in Bild 6 schon optisch deutlich. Der Behälter zeigt einen sehr frühen Beginn der SE- Aktivität und im Vergleich zu den anderen Behältern die geringste Absolute Energie am Ende der Belastung.

Der Behälter 79/10 zeigt nur bei dem dargestellten Kanal 2 Auffälligkeiten, im Gegensatz zu dem Behälter 39/10, der die Auffälligkeiten bei jedem SE-Kanal zeigte.

Die Auswertung der Beurteilungskriterien basiert auf einem 95%-Vertrauensbereich unter Annahme einer Normalverteilung der Messwerte. Der Statistik liegen die Messwerte von neun der zehn untersuchten Behälter zugrunde. Der Behälter 39/10 wurde wie ein Behälter mit einem Transport- oder Fertigungsfehler behandelt (siehe Tabelle 3) und geht nicht in die Statistik ein.

Bild 7: Energiesummenkurven für Kanal 2 - alle Behälter mit Fertigungsfehler

Die Ergebnisse der SE-Messung an den Druckbehältern mit künstlichen Fertigungsfehlern sind exemplarisch für den Kanal 2 in Bild 7 dargestellt. Als Vergleich zu den Ergebnissen der ungeschädigten Prüfmuster sind die Behälter mit der höchsten (79/10) bzw. niedrigsten (58/10) Energiesummenkurve in grau eingetragen. In grün ist der Behälter 39/10 eingetragen, der sich als beschädigter Behälter herausstellte.

Eine Gruppierung der Ergebnisse der Druckbehälter nach ihren jeweiligen Fertigungsfehlern ist aufgrund der hohen Streuung nicht ersichtlich.

In Tabelle 3 sind die Ergebnisse der Analyse für jeden SE-Kanal und jedes angewendete SE-Kriterium dargestellt. Das Symbol "X" kennzeichnet ein nicht gefundenes Kriterium, ein "N" weist auf ein erfülltes Kriterium und somit auf einen Behälter mit Fertigungsfehler oder einer anderen Beschädigung.

KanalS		Schädigung	39/10	Beschädigte Fasern		Trockene Kohlenstofffasern			Knoten im Behälter			
	SE K	Behälter Kriterium		192/10	193/10	194/10	195/10	196/10	197/10	198/10	199/10	200/10
1	(1)	p ₀	Х	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	Х	Х	Х
	(2)	ΣAbs.E _{AE} (pb)	Х	Х	Х	Х	\checkmark	Х	\checkmark	Х	Х	Х
	(3)	$\Delta(\Sigma Abs.E_{AE}) / \Delta p$	Х	Х	Х	Х	\checkmark	Х	Х	Х	Х	Х
	(4)	$\Sigma Abs.E_{AE}(p_h)$	Х	Х	Х	Х	\checkmark	Х	Х	Х	Х	Х
	(5)	$\Delta(\Sigma Abs.E_{AE}(p_{hold}))$	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2	(1)	P ₀	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	Х	Х	Х	Х
	(2)	ΣAbs.E _{AE} (pb)	Х	\checkmark	Х	Х	Х	Х	Х	Х	Х	Х
	(3)	$\Delta(\Sigma Abs.E_{AE}) / \Delta p$	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	(4)	$\Sigma Abs.E_{AE}(p_h)$	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	(5)	$\Delta(\Sigma Abs.E_{AE}(p_{hold}))$	Х	Х	Х	\checkmark	Х	Х	Х	Х	Х	Х
3	(1)	P ₀	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	Х	Х	Х	Х
	(2)	ΣAbs.E _{AE} (pb)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	(3)	$\Delta(\Sigma Abs.E_{AE}) / \Delta p$	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	(4)	$\Sigma Abs.E_{AE}(p_h)$	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	(5)	$\Delta(\Sigma Abs.E_{AE}(p_{hold}))$	Х	Х	Х	\checkmark	Х	Х	Х	Х	Х	Х
4	(1)	p ₀	Х	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	Х	Х	Х
	(2)	ΣAbs.E _{AE} (pb)	\checkmark	Х	Х	Х	\checkmark	Х	Х	Х	Х	Х
	(3)	$\Delta(\Sigma Abs.E_{AE}) / \Delta p$	\checkmark	Х	Х	Х	Х	Х	Х	Х	Х	Х
	(4)	ΣAbs.E _{AE} (p _h)	\checkmark	Х	Х	Х	Х	Х	Х	Х	Х	Х
	(5)	$\Delta(\Sigma Abs.E_{AE}(p_{hold}))$	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Tabelle 3: Nachweisbarkeit der Fertigungsfehler, geeignete SE-Kriterien und Sensorpositionen

5 Ergebnis

Wie die Ergebnisse in Tabelle 3 zeigen, können zwei von drei künstlichen Fertigungsfehlern mit einem Vertrauensbereich von 95% entdeckt werden. Der Druckbehälter 39/10 mit unbekanntem Fertigungsfehler konnte ebenfalls gefunden werden. Die detektierten Fertigungsfehler konnten alle durch das P₀-Kriterium nachgewiesen werden, jedoch nicht an jeder Sensorposition. Dieses Kriterium kennzeichnet den Beginn der signifikanten Schädigung.

Eine ungleichmäßige Harzverteilung (trockene Kohlenstofffasern) zeigt den größten Einfluss auf die mechanischen Eigenschaften des Druckbehälters. Die Ermüdungsfestigkeit gegenüber zyklischer Belastung nimmt um mehr als 95% ab, gegenüber statischer Belastung um mehr als 23%.

Knoten in der Faserverbundstruktur zeigen nur einen sehr geringen Einfluss auf den Berstdruck der Behälter, haben aber einen großen Einfluss auf die Lebensdauer bei zyklischer Belastung.

Die Faserschädigung, wie sie bei der Fertigung künstlich erzeugt wurde, zeigt keine erkennbare Beeinträchtigung der Ermüdungsfestigkeit gegenüber statischer und gegenüber zyklischer Belastung.

Mit dem angewandten SEP-Verfahren lassen sich jedoch keine Knoten in der Verbundstruktur detektieren. Hier kann eine Verbesserung der angewandten Kriterien oder ein geringerer Vertrauensbereich eine Verbesserung bringen. Andererseits ist der Einfluss der Knoten nicht so groß, dass diese Behälter die Anforderungen der Baumusterzulassungsprüfung (siehe z.B. ISO 11439) nicht bestehen würden.

Eine ungleichmäßige Harzverteilung kann durch das P_0 -Kriterium erkannt werden, jedoch nicht an jeder Sensorposition. Der Einfluss auf die mechanischen Eigenschaften des Druckbehälters ist so groß, dass er die Zulassungsprüfung auch nicht bestehen würde.

Die künstlich geschädigten Fasern können an allen Druckbehältern und mit allen SE-Kanälen entdeckt werden. Anhand der Messungen war es möglich mit den SE-Kriterien nachträglich einen Behälter zu identifizieren, welcher auch durch sein mechanisches Verhalten aufgefallen ist. Der Defekt an Behälter 39/10 konnte nicht abschließend identifiziert werden. Sein Nachweis deutet jedoch darauf hin, dass auch ein nicht künstlich eingebrachter Fertigungsfehler durch die beschriebene Methodik gefunden werden kann.

Die Auswertung der Ergebnisse zeigt die Möglichkeit, für diesen Behältertyp die Anzahl der Sensoren auf zwei zu reduzieren, je einen Sensor im zylindrischen Bereich und im Dombereich, ohne Informationen bei den SE-Kriterien zu verlieren.

Referenzen

 Deliverable D SA 7, Procedure for Evaluation of Composite Cylinders using Acoustic Emission – J. Bohse, G.W. Mair, S. Anders – EU Project StorHy – Sep. 2006

[2] Patentanmeldung "DE 10 2006 033 905.3" (2008.01.31) und "EP 07 111 704.8"- J. Bohse, G.W. Mair